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Abstract

Autoregressive (AR) models have long dominated the landscape of large language
models, driving progress across a wide range of tasks. Recently, diffusion-based
language models have emerged as a promising alternative, though their advantages
over AR models remain underexplored. In this paper, we systematically study
masked diffusion models in data-constrained settings—where training involves
repeated passes over limited data—and find that they significantly outperform AR
models when compute is abundant but data is scarce. Diffusion models make
better use of repeated data, achieving lower validation loss and superior down-
stream performance. We interpret this advantage as implicit data augmentation:
masked diffusion exposes the model to a diverse distribution of token orderings
and prediction tasks, unlike AR’s fixed left-to-right factorization. We find new
scaling laws for diffusion models and derive a closed-form expression for the
critical compute threshold at which diffusion begins to outperform AR. These
results suggest that when data, not compute, is the bottleneck, diffusion models
offer a compelling alternative to the standard AR paradigm. Our code is available
at: https://github.com/wmn-231314/diffusion-data-constraint.
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Figure 1: Pareto frontier of validation loss versus training FLOPs for autoregressive (AR) and
masked diffusion models under data-constrained settings. Each point represents a model trained until
convergence; we report the best validation loss achieved among all models using less than or equal to
the FLOPs shown on the x-axis. AR models initially outperform diffusion models, particularly near
the Chinchilla-optimal compute point [15] (indicated on the plot). However, as training continues
beyond this regime with repeated data, AR models quickly saturate and begin to overfit. In contrast,
diffusion models continue to improve with more compute and exhibit no signs of overfitting.
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1 Introduction

Training large language models (LLMs) on massive corpora of internet text has become the driver
of recent AI breakthroughs [4, 30, 43]. This progress has been fueled by scaling two core resources
proportionately: compute and data [18, 14]. While compute availability has steadily grown—enabled
by advances in hardware and the construction of larger data centers—the growth in high-quality data
has been comparatively stagnant. Recent projections, such as those by Villalobos et.al. [45], estimate
that the global supply of publicly available, human-generated data may be exhausted by 2028, posing
a serious bottleneck to further scaling. This looming constraint makes it increasingly important to
develop modeling strategies that are more data-efficient. Furthermore, there are several domains,
such as robotics and healthcare, where the data, not compute, is a scarce resource even to begin with.

LLM development has so far been dominated by autoregressive (AR) models, which factorize the
joint distribution of text in a fixed left-to-right order, i.e., p(x) = p(x0)p(x1 | x0)p(x2 | x1)p(x3 |
x1, x2). While this modeling approach has delivered state-of-the-art performance across a range
of benchmarks, it remains unclear whether it is the optimal strategy going forward. Recently,
diffusion-based models—specifically masked diffusion models [2, 33, 21, 37, 1]—have emerged
as an alternative strategy, where they model text via a random-order factorization, e.g., p(x) =
p(x2|x3)p(x3|x0)p(x0|x1)p(x1). These models learn across many different masked versions of the
text, allowing them to train on diverse token orderings. Although diffusion language models have
demonstrated similar scaling behavior to AR models [25, 42], their practical benefits have, so far,
been modest—largely due to their high training compute requirements.

This high compute demand has become the central obstacle to wider adoption of diffusion-based
language models. As noted by Nie et al. [25] and Swerdlow et al. [42], masked diffusion models
require up to 16× more compute than AR models to match validation NLL—a clear disadvantage for
most applications.

But a critical nuance is often overlooked: these comparisons are based entirely on single-epoch
training, where each token is seen only once. This conflates compute efficiency with data efficiency,
making it unclear whether diffusion models truly need 16× more compute—or simply 16× more data.

To resolve this ambiguity, we systematically study masked diffusion models in data-constrained
settings, where repeated training on limited data is the norm rather than the exception. We find
that under such regimes, diffusion models substantially outperform autoregressive models across a
variety of data scales and compute budgets. We train hundreds of models spanning multiple orders of
magnitude in model size, data quantity, and number of training epochs to fit scaling laws for diffusion
models in the data-constrained setting. We summarize some of our key findings below.

1. Diffusion models surpass autoregressive models given sufficient compute. Across a
wide range of unique token budgets, we observe a consistent trend: autoregressive models
initially outperform diffusion models at low compute, but quickly saturate. Beyond a critical
compute threshold, diffusion models continue improving and ultimately achieve better
performance (Section 4.1)

2. Diffusion models benefit far more from repeated data. Prior work [24] showed that
repeating the dataset up to 4 epochs is nearly as effective as using fresh data for autoregressive
models. In contrast, we find that diffusion models can be trained on repeated data for up to
100 epochs, while having repeated data almost as effective as fresh data (Section 4.2).

3. Diffusion models have a much higher effective epoch count. Muennighoff et al. [24]
fit scaling laws for AR models in data-constrainted settings and define R∗

D as a learned
constant that characterizes the number of epochs after which training more epochs results in
significantly diminished returns. For autoregressive models, they estimate R∗

D ≈ 15 . In
contrast, we find R∗

D ≈ 500 for diffusion models, suggesting they can benefit from repeated
data over far more epochs without major degradation (Section 4.2).

4. Critical compute point follows a power law with dataset size. We find that the amount of
compute required for diffusion models to outperform autoregressive models—the critical
compute point—scales as a power law with the number of unique tokens. This yields a
closed-form expression that predicts when diffusion becomes the favorable modeling choice
for any given dataset size (Section 4.3).
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5. Diffusion models yield better downstream performance. We find the above benefits
extend beyond validation loss: the best diffusion model trained in data-constrained settings
consistently outperform the best autoregressive model on a range of downstream language
tasks (Section 4.4).

Through detailed scaling law analysis and downstream task evaluations, we demonstrate that dif-
fusion models make significantly better use of repeated data, achieving lower validation loss and
better generalization to downstream tasks. These results suggest that diffusion models may offer a
compelling and underappreciated advantage in scenarios where data—not compute—is the primary
bottleneck.

2 Related Work

Deep Learning in Data-Constrainted Settings. Deep learning progress has been largely driven
by the scaling of both data and compute. However, recent analyses suggest we may soon face a
data bottleneck that could inhibit continued advancement [45]. In language modeling, the dominant
paradigm has been autoregressive (AR) models [44, 30, 4], which are typically trained for a single
epoch to maximize exposure to unique tokens [14]. In light of looming data constraints, Muennighoff
et al.[24] show that AR models can still benefit from data reuse: training for up to four epochs
on repeated data achieves performance nearly on par with training on fresh data, suggesting an
effective strategy for improving data efficiency. In contrast, computer vision has long embraced
multi-epoch training along with aggressive data augmentation—such as random cropping, flipping,
and color jittering—to expand effective dataset size and improve generalization[39, 46], particularly
for discriminative tasks like classification and detection. Despite these practices, data efficiency in
generative modeling remains underexplored, and the trade-offs between leading paradigms such as
diffusion and AR models under constrained data regimes are still poorly understood.

Diffusion-Based Language Models. Diffusion models, originally developed for image genera-
tion [13], have recently been adapted to text, offering a fundamentally different paradigm for language
modeling [2, 20, 11]. Broadly, diffusion language models fall into two categories: continuous and
discrete. Continuous approaches [11] inject Gaussian noise in the forward process, whereas discrete
methods [2] corrupt tokens with noise sampled from distributions such as Bernoulli. Among the two
classes, continuous diffusion has proven more difficult to scale on language data [11, 22]. In contrast,
recent advances in discrete diffusion—particularly masked diffusion—have shown encouraging
results. Recent work [1, 9, 33, 22] has significantly narrowed the performance gap between diffusion
and AR models. Notably, LLaDA [26] scales masked diffusion models to 8B parameters and achieves
results similar to LLaMA3-8B across both pretraining and instruction-tuned evaluations. Furthermore,
Nie et al. [25] provide scaling law analysis showing that diffusion models follow similar power-law
trends as AR models, though they may require up to 16× more compute under single-epoch training,
Swerdlow et al. [42] find similar trends on multimodal data containing both image and text. However,
these evaluations are restricted to single-pass training and do not examine the data-constrained,
multi-epoch regimes which is the focus of our work.

3 Method

Our objective is to determine whether masked diffusion language models are more effective than
standard autoregressive models in data-constrainted settings. The main difference between AR and
diffusion models is the way they factorize the joint distribution of the sequence. Masked diffusion
factorizes the joint distribution of the sequence in a random order, while AR factorizes the joint
distribution of the sequence in a left-to-right order. To isolate the impact of this, we keep the
architecture and data pipeline fixed across both families and vary only the factorization of the joint
distribution.
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3.1 Preliminaries:

Autoregressive models. In Autoregressive LLMs [43, 30, 4] we predict each token based on a
growing prefix of prior tokens, defining a left-to-right factorization of the sequence probability:

pAR(x1, . . . , xL) =

L∏
j=1

p(xj | x<j).

This structure is implemented using a causal attention mask, which prevents each token from attending
to future positions. The model is trained via next-token prediction over clean, uncorrupted sequences.

Diffusion models. Masked diffusion language models [2, 33, 25, 42] treat generation as iterative
denoising. For each training sequence x = (x1, . . . , xL) we

1. Corrupt the sequence by sampling a masking ratio r ∼ U(0, 1) and independently replacing each
token with a special [MASK] symbol with probability r. This yields a corrupted sequence x̃ and a
mask set

M = { i ∈ [1, L] : x̃i = [MASK] }.

2. Denoise by predicting the original tokens at the masked positions with full (bidirectional) attention
over x̃:

pDiffusion(x | x̃) =
∏
i∈M

pθ
(
xi | x̃

)
.

Because the mask pattern is resampled for every example, the model is implicitly trained on a vast
collection of token–ordering tasks; the standard left-to-right ordering used by AR models is just one
ordering within this ensemble. The absence of a causal mask allows each prediction to attend to both
past and future unmasked tokens, making the factorization fundamentally non-sequential.

3.2 Modeling Details for AR and Masked Diffusion

Our goal is to isolate the impact of the factorization—fixed left-to-right versus random-order denois-
ing—while keeping every other design choice constant. Unless noted otherwise, both model families
share the same Transformer backbone (GPT-2 style with rotary positional embeddings, RoPE [41])
and identical training hyper-parameters across the full parameter sweep (7 M – 2 B).

Given a clean input sequence x = (x1, . . . , xL) ∈ VL, both models minimize a token-level cross-
entropy loss, yet they differ in the conditioning context:

Autoregressive (AR) objective. AR models predict each token conditioned on its prefix using a
causal attention mask:

LAR = −
L∑

j=2

log pθ
(
xj | x<j

)
.

Masked Diffusion objective. For masked diffusion we first sample a masking ratio r ∼ U(0, 1)
and construct a corrupted sequence x̃ by independently replacing each token with [MASK] with
probability r. Let M = { i : x̃i = [MASK] } be the set of masked positions. The loss is then

LDiffusion = −Er Ex̃∼qr

∑
i∈M

log pθ
(
xi | x̃

)
.

Unlike Nie et al. [25], we do not add auxiliary losses (e.g., classifier-free guidance) in order to ablate
only the factorization.

Beyond the attention mechanism and input corruption, all other variables are held constant. We
follow the hyperparameter configuration proposed by Muennighoff et al. [24] for all training runs. In
particular, we use a dynamic learning rate schedule that adapts to the number of training epochs. The
only distinctions between AR and diffusion models in our implementation are:

1. Attention mechanism: Causal attention for AR; full self-attention for masked diffusion.
2. Prediction target: AR models predict the next token; diffusion models predict the masked

tokens.
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3.3 Scaling Framework in Data-Constrained Settings

Classical scaling laws, such as those proposed by [18, 15], model validation loss as a function of
total parameters (N ) and training tokens (D), assuming all data is unique. These laws have been
instrumental in guiding compute-optimal training of language models. However, this assumption
becomes unrealistic as the community approaches the limits of high-quality text data available on the
internet.

To address this, Muennighoff et al.[24] extend the Chinchilla framework to explicitly account for
repeated data — a common necessity in data-constrained regimes. They show that repeating training
data beyond a few epochs yields diminishing returns and propose a new scaling law that incorporates
the decaying utility of repeated tokens.

We briefly outline their formulation below.

Definitions:

• U : number of unique tokens available for training,
• E: number of epochs (i.e., how many times each unique token is reused),
• D = U · E: total number of tokens seen by the model.

To model diminishing returns from repeated data, Muennighoff et al. [24] introduce an effective
unique data size D′, motivated by the idea that each additional epoch contributes less useful signal
than the previous. Specifically, they assume the value extracted from the kth exposure to the same
data follows a geometric progression, where the utility of a token on its k-th repetition is (1− δ)k−1.
Summing over all epochs the total effective data becomes: D′ = U ·

∑E
k=1(1−δ)k−1 = U · 1−(1−δ)E

δ

where δ is the decay factor. Defining R⋆
D = 1−δ

δ , the expression simplifies to the exponential-decay
form:

D′ = U + U ·R⋆
D

(
1− e−(E−1)/R⋆

D

)
.

here R∗
D represents the half-life of data reuse, repeating data beyond R∗

D epochs will result in
significant diminishing returns. This form approximates the geometric sum well and captures
diminishing returns over repeated epochs. As the number of epochs E → ∞, the exponential term
vanishes and D′ asymptotically approaches: D′ → U + U ·R⋆

D, implying that no matter how many
times data is repeated, the maximum usable signal is bounded by (1+R⋆

D) ·U . This defines a natural
saturation point on returns: even infinite compute yields no additional effective data beyond this limit.

A symmetric formulation is applied to model parameters for mathetmatical convenience which is
used to define N ′. Finally, a modified Chinchilla-style loss function incorporates these effective
quantities N ′ and D′:

L(N,D) =
A

(N ′)α
+

B

(D′)β
+ E0,

with A,B, α, β,E0, R
⋆
D, N⋆

D fitted empirically from training runs. This formulation accurately
captures loss behavior in regimes where data is reused multiple times and serves as a powerful tool
for guiding training under data scarcity.

In this work, we adopt this framework to study how diffusion models and autoregressive models
compare in their ability to extract value from repeated data, enabling apples-to-apples comparisons
across compute, data, and model scale.

3.4 Training setup

We use the English C4 corpus [31], tokenized with the GPT-2 BPE vocabulary and truncated or
padded to 2048 tokens per sequence. We consider unique-token budgets of U ∈ {25, 50, 100}M
and train for up to 800 epochs (80B tokens total). Models are trained ranging from 7M to 2.5B
parameters, following the Chinchilla scaling strategy where both width and depth are increased
proportionally. The detailed architectural configurations of each model are provided in Appendix 10.
For all training runs, we adopt the hyperparameter configuration introduced by Muennighoff et
al. [24]. This may provide a slight advantage to autoregressive models, as these hyperparameters
were originally tuned for that family. For all models, we use the following hyperparameters: batch
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size of 256 sequences, AdamW optimizer with β1=0.9, β2=0.95, ϵ=10−8, a learning rate schedule
with peak 2e-4, minimum 2e-5, 1% warm-up, cosine decay, weight decay 0.1, and gradient clipping
of 1.0.

4 Experiments

Our goal is to compare the performance of masked diffusion models and autoregressive models in
data-constrained settings. To this end, we train a total of 200 models—100 diffusion models and 100
autoregressive models—across varying unique data sizes, model scales, and epoch counts. We present
the empirical results in Section 4.1. In Section 4.2, we fit scaling laws tailored to data-constrained
regimes for both model types, following the methodology introduced by Muennighoff et al.[24].
These scaling laws allow us to analyze performance trends and identify scenarios where diffusion
models should be preferred over autoregressive ones (Section 4.3). Finally, in Section 4.4, we
demonstrate that the superior validation loss of diffusion models indeed correlates with improved
downstream task performance.

4.1 Does Diffusion beat AR in Data Constrained Settings?

Previous studies comparing diffusion models and autoregressive (AR) models have predominantly
focused on the single-epoch regime [34, 25, 42], where each data point is seen only once during
training. In this setting, diffusion models have consistently been reported to require substantially
more training compute to match the validation loss of AR models. For example, Nie et al.[25] and
Swerdlow et al.[42] derive scaling laws that indicate that masked diffusion models need up to 16×
more training compute to achieve comparable performance to AR. However, because total compute
C is a function of both model parameters and the number of unique data tokens (C ∼ 6ND), it
remains ambiguous whether this gap reflects a fundamental inefficiency in the use of unique data, or
simply a higher compute requirement for diffusion models when trained on the same data. In other
words, is the bottleneck for diffusion models data efficiency or compute efficiency?

To resolve this ambiguity, we systematically investigate the performance of masked diffusion models
and AR models in data-constrained settings, where the number of unique tokens is limited and data
must be reused across multiple epochs. Unlike prior work, we explicitly train both model families for
many epochs, thereby disentangling the effects of data reuse from those of model scaling.

We train a large suite of AR and diffusion models across three unique data regimes—25M, 50M,
and 100M tokens—and a wide range of training compute budgets. In Figure 1, we report empirical
validation loss as a function of training FLOPs for the 50M and 100M regimes; results for the 25M
setting are shown in Appendix Figure 7. We find that AR models initially outperform diffusion
models when trained with the compute-optimal budget prescribed by Chinchilla scaling laws (denoted
by the solid vertical line). However, this advantage disappears as training continues beyond this
point. When models are allowed to train for additional epochs on repeated data, diffusion models
consistently surpass AR models in validation loss across all data regimes. These findings indicate that
the previously observed inefficiency of diffusion models is largely a consequence of evaluating them
solely in the single-epoch regime. In data-constrained settings with repeated exposures, diffusion
models extract significantly more value from the same data than their AR counterparts.

A key question remains is how should one go about increasing compute for diffusion models: by
increasing model size, or by increasing the number of epochs (i.e., data reuse)? To address this,
we analyze the trade-off between parameters and epochs in Figure 2, which shows validation loss
contours as a function of both axes. In the 100M unique token regime, for example, we find that
diffusion achieves its best loss at 500 epochs, while AR model reach its best at just 50 epochs. Each
point on the contour plot corresponds to a model trained with a specific parameter count and number
of epochs; we report the actual validation loss at each configuration, without early stopping. We find
that autoregressive models begin to overfit at high epoch counts, with validation loss worsening as
training continues beyond a certain point. In contrast, diffusion models show no signs of overfitting
within our compute budget—the best validation loss is achieved at the highest epoch counts we
explore. This suggests that diffusion models continue to benefit from additional training on repeated
data, and that observing overfitting may require significantly more compute.
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To contextualize these results, we highlight two key configurations in Figure 2 for each model
family: the compute-optimal point for single-epoch training, as identified by prior scaling law
analyses [15, 27] (marked with a colored star in the bottom-left), and the best validation loss achieved
under extended multi-epoch training (marked with a black star). At the compute-optimal point,
which corresponds to training for a single epoch, diffusion models perform substantially worse than
autoregressive models (10.65 vs. 7.07), consistent with prior findings that diffusion performs worse
initially. However, as training is extended to hundreds of epochs, diffusion models continue to
improve and eventually achieve a lower validation loss (3.55) than the best AR models (3.71). While
AR models begin to overfit as training progresses, diffusion models show no signs of overfitting
within our budget.

(a) Autoregressive contour: validation loss over
epochs and model sizes.

(b) Diffusion contour: validation loss over epochs
and model sizes.

Figure 2: Validation loss contours over epochs and model sizes for autoregressive (left) and diffusion
(right) models, trained on 100M unique tokens. Each plot shows validation loss as a function of
training epochs (x-axis) and model parameters (y-axis). The colored star marks the compute-optimal
point for single-epoch training, as predicted by prior scaling laws [15, 27], and the black star indicates
the lowest validation loss achieved through extended multi-epoch training. In the single-epoch regime,
diffusion models perform worse than AR models (10.65 vs. 7.07). However, when trained longer,
diffusion models achieve a substantially lower final loss (3.55 vs. 3.71). This corresponds to a 67%
reduction in loss for diffusion models compared to just 48% for AR models, highlighting their superior
ability to leverage repeated data. These results underscore that diffusion models require significantly
more training—both in epochs and compute—to realize their advantages in data-constrained settings.

4.2 Fitting Data-Constrained Scaling Laws

To gain deeper insight into the trade-offs between diffusion and autoregressive models in data-
constrained settings, we fit scaling laws to both model families across single-epoch and multi-epoch
regimes, as described in Section 3.3. Our approach systematically varies three key factors: (1) the
amount of unique data, (2) model parameter count, and (3) number of training epochs. This grid
search allows us to disentangle the effects of data quantity, model capacity, and data reuse on final
model performance.

We evaluate the quality of our scaling law fits using the coefficient of determination (R2) and relative
prediction error, as shown in Table 1. For autoregressive models, our R2 values closely match
those reported by Muennighoff et al. [24], indicating consistent behavior under repeated training.
Interestingly, diffusion models yield significantly higher R2 values, reflecting a better overall fit. We
attribute this to lower variance in validation loss across training runs, likely due to the absence of
overfitting in diffusion models even at high epoch counts.

Beyond the overall fit, we extract two key parameters from the scaling laws: R∗
D, which characterizes

the effective half-life of data reuse—i.e., the number of epochs after which additional training on
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Figure 3: Decay rate of data value under repetition: left shows diffusion, middle AR, and right the
average decay rate for both. Points are empirical results (darker color = higher FLOPs, lighter color =
lower FLOPs; each line = fixed compute), we find that fitted curves (represented as lines) closely
match the empirical points, indicating our scaling laws are representative. The decay rate of value for
repeated data is lower for diffusion, reflecting its greater robustness to repeating.

repeated data yields diminishing returns—and R∗
N , which indicates the optimal model size for a given

data budget. Our results reveal a sharp contrast in data reuse half-lives: diffusion models exhibit an
R∗

D of 512.85, compared to just 31.93 for autoregressive models. A higher R∗
D implies that a model

can benefit from many more repeated exposures before saturating. This suggests that diffusion models
continue to improve across hundreds of epochs, while AR models quickly saturate—highlighting the
superior data efficiency of diffusion models in data-constrained regimes.

Table 1: Fitting metrics of the scaling law model for Diffusion and AR. Diffusion and AR achieve a
strong fit across both phases.

(a) Initial fit.

Model R2 Loss
Diffusion 0.9447 0.0002
AR 0.9439 7.7532e−05

(b) Second step fit with extracted scaling parameters.

Model R2 Loss R∗
D R∗

N

Diffusion 0.9784 0.00079 493.89 1265.65
AR 0.7628 0.00361 31.19 55.16

Figure 3 illustrates how the utility of unique data decays with increased repetition. We evaluate this
effect across three compute budgets—1 × 1019, 3 × 1019, and 1 × 1020 FLOPs—by varying the
proportion of unique data while keeping total compute fixed (e.g., 50% of the data for 2 epochs, 25%
for 4 epochs, etc.). This experimental design allows us to directly measure how the utility of data
diminishes with increased repetition. We present both empirical results and fitted curves from our
parametric scaling law, observing strong agreement between the two. Notably, the decay rate of data
value remains consistent across compute budgets for both model families. However, diffusion models
consistently exhibit a substantially slower decay rate than AR models, suggesting they are better able
to extract value from repeated data.

Figure 4 shows validation loss versus training tokens and reinforces the trend: AR models overfit with
increased repetition, showing diverging loss curves. In contrast, diffusion models exhibit overlapping
curves across repetitions, indicating no signs of overfitting and a very low decay rate with data reuse..

Figure 5 shows extrapolated training curves at large compute budgets for AR and diffusion models
using our fitted scaling laws. For each setting, we use the compute-optimal model and dataset size
derived from single-epoch scaling laws and extend training across multiple epochs. The dashed lines
represent the ideal Chinchilla-style scaling behavior, where all training tokens are assumed to be
unique. We find that for AR models, repeated data provides nearly the same benefit as fresh data
only up to about 4 epochs. Beyond this point, additional repetition yields diminishing returns. In
contrast, diffusion models continue to match the unique-data curve for up to 100 epochs, indicating a
far greater capacity to benefit from repeated data in data-constrained regimes.
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(a) AR Training Curves. (b) Diffusion Training Curves.

Figure 4: Training curves for different epoch counts, all with using the same total compute. Each
curve shows a different tradeoff between unique data and repetition. For AR models, validation loss
rises with more epochs (overfitting), while for diffusion models, the curves are nearly unchanged,
showing much greater robustness to data repetition.

Repeating for 4 epochs is almost 
as good as new data

Repeating for 100 epochs is 
almost as good as new data

Figure 5: Predicted validation loss for AR models (left) and Diffusion models (right) under compute-
optimal settings, extrapolated to larger compute budgets. Dotted lines indicate the hypothetical case
where repeated data is as valuable as new data. For AR, this holds up to about 4 epochs; for diffusion,
up to 100 epochs, showing that diffusion models are much more robust to data repetition.

4.3 When to Use Diffusion over AR?

A key question for practitioners is: when should diffusion be preferred over autoregressive models
(AR)? To answer this, we compare the fitted data-constrained scaling laws for both model families
(§3.3).

We define the validation loss gap between diffusion and AR as:

∆L(C,U) = LDiffusion(C,U)− LAR(C,U),

where C is total training compute and U is the number of unique tokens. Positive values favor AR;
negative values favor diffusion. The critical compute Ccrit(U) is the point where the models perform
equally:

∆L(Ccrit, U) = 0.

Figure 6(a) shows a heatmap of ∆L over compute and data. Red regions indicate regimes where
diffusion outperforms AR (∆L < 0), while blue regions favor AR. As expected, AR performs better
in low-compute settings due to its efficient per-step learning. However, diffusion models begin to
outperform AR at higher compute, especially when data is limited and repeated.

Figure 6(b) plots the critical compute frontier Ccrit(U)—the compute required for diffusion to
match or surpass AR at a given unique token count U . This frontier follows a power law:

Ccrit(U) ∝ U2.174.

The linear fit in log-log space is:

log10(U) = 0.460 · log10(C)− 7.052, so Ccrit(U) = 2.12× 1015 · U2.174.
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(a) Loss Gap Heatmap. Difference in validation loss
(∆L = LDiffusion − LAR) across unique data sizes and
FLOPs. Red indicates regions where diffusion out-
performs AR models and blue where AR outperforms
diffusion.

(b) Critical Compute Curve. The FLOPs thresh-
old Ccrit(U) beyond which diffusion outperforms
AR models. This follows a power law: Ccrit(U) ∝
U2.174.

Figure 6: When does Diffusion beat AR? Left: Heatmap showing where diffusion models have
lower validation loss than AR models. Right: The critical compute curve defining the compute
threshold needed for diffusion to match autoregressive models at a given unique token count.

The green dashed line shows the fitted curve, and the blue crosses represent empirical crossover
points—where diffusion matches AR performance in experiments. These points align closely with
the predicted frontier, confirming our fitted equation’s accuracy.

4.4 Downstream Results

We evaluate the best-performing diffusion and autoregressive (AR) models on several downstream
benchmarks to assess whether the gains in validation loss translate to practical improvements in
generalization.

Motivated by the critical compute threshold equation identified in Section 4.3, we scale the training
data to 500M unique tokens and train a 2.3B parameter diffusion model using the compute budget
predicted by the critical compute limit. The model was trained for 130 epochs, during which we
observed no signs of convergence. Training was terminated due to compute constraints.

Across a diverse set of tasks and data scales, diffusion models consistently achieve higher accuracy
than their AR counterparts. This validates our findings in Section 4.3, also confirms that the
data efficiency gains observed in validation loss translate into stronger downstream performance.
Additional results, including performance on textbook-style datasets, are provided in Table 3 in the
Appendix.

5 Discussion

Why do diffusion models outperform autoregressive (AR) models in low-data regimes? We
hypothesize that the key advantage stems from the use of random masking in diffusion models,
which serves as a form of data augmentation. Unlike AR models, which are trained on a single, fixed
left-to-right ordering, masked diffusion models are exposed to a wide variety of token prediction tasks
and orderings during training—including, the left-to-right order itself. This broader distribution over
prediction tasks encourages better generalization and more effective use of each training example.
Analogous to image-based tasks where techniques like random cropping or color jittering boost
generalization [5, 8, 12], we believe the corruption process in diffusion plays a similar role. By
learning to denoise across many corruptions, the model extracts richer signal per example over time,
resulting in improved data efficiency.

Why are autoregressive (AR) models more compute-efficient than diffusion models? We
hypothesize two main contributing factors. (i) Order specialization: AR models are trained with a
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Table 2: Downstream Results for the best autoregressive and diffusion trained in different data-
constrainted settings. We report the results for the models with the best validation loss in 100M and
500M unique data regime.To better understand the difficulty of each benchmark we also report the
accuracy of random baseline

Benchmarks Random Baseline 100M unique tokens 500M unique tokens

AR Diffusion AR Diffusion

ARC-Easy [7] 25.00 35.63 37.84 43.79 45.95
BoolQ [6] 50.00 46.00 49.38 51.87 55.26
COPA [32] 50.00 56.33 59.00 67.00 64.83
HellaSwag [47] 25.00 27.37 30.24 32.28 35.33
PiQA 50.00 60.94 60.72 65.71 65.61
RACE [19] 25.00 25.28 28.96 28.28 31.44
WinoGrande XL [35] 50.00 48.87 50.97 50.61 51.51
SciQ [17] 25.00 58.05 68.67 67.82 79.13
Lambada [29] 00.00 10.91 15.19 15.07 22.30
Note: All values represent accuracy (%). Best results shown in bold.

fixed left-to-right factorization, so every gradient update reinforces the same prediction task, allowing
them to specialize effectively. In contrast, diffusion models must generalize across many random
token orderings, which hinders specialization. (ii) Stronger supervision per update: In AR training,
every token in a training sequence serves as a supervised target, and the causal structure enables dense
gradient updates, resulting in stable, low-variance learning. Diffusion models, however, compute loss
only on a subset of masked tokens, making supervision sparser per sequence, even though gradients
propagate through the entire input. As a result, each update carries less direct learning signal. Arriola
et al. [1] show that tuning the masking schedule can help reduce gradient variance and improve
training compute efficiency.

6 Limitations

In this work, we examined two extremes of the generative modeling: masked diffusion models,
which learn entirely random token orderings, and autoregressive (AR) models, which learn a fixed
left-to-right order. However, we believe that the trade-off between data and compute efficiency
need not be binary. In principle, one could interpolate between these two paradigms to achieve a
more favorable balance. Prior works have proposed such hybrid approaches that blend diffusion and
autoregressive modeling [1, 16], although their interpolations are not motivated by, nor evaluated in
terms of, data and compute efficiency trade-offs. Exploring interpolation along this axis remains a
promising direction for future research.

7 Conclusion

As the availability of high-quality data plateaus, improving data efficiency becomes essential for
scaling deep learning. In this work, we show that masked diffusion models consistently outperform
autoregressive (AR) models in data-constrained regimes — when training involves repeated passes
over a limited dataset. We establish new scaling laws for diffusion models, revealing their ability to
extract value from repeated data far beyond what AR models can achieve. These results challenge
the conventional belief that AR models are universally superior and highlight diffusion models as a
compelling alternative when data—not compute—is the primary bottleneck. Looking ahead, efficient
use of finite data may define the next frontier in scaling deep learning models. Although the studies
have been performed in the context of language models, we believe these findings should apply across
any kind of sequence modeling data, such as in robotics or healthcare.

For practitioners, our takeaway is simple: if you are compute-constrained, use autoregressive
models; if you are data-constrained, use diffusion models.
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9 Additional Results

Diffusion Pareto Frontier 

Figure 7: Pareto frontier of validation loss (negative log-likelihood) versus training FLOPs for
autoregressive (AR) and diffusion models under data-constrained settings, on three different unique
data settings 25M, 50M and 100M.

Table 3 reports the negative log-likelihood (NLL; lower is better) on four diverse corpora: OSCAR
[28], TinyStories[10], WikiText [23], and IndustryCorpus2 EN Sub [38]. These datasets span open-
domain, narrative, encyclopedic, and industry-specific text.

Table 3: Downstream NLL of best diffusion and AR models at 100M unique data points.
Model Type Flops OSCAR TinyStories WikiText IndustryCorpus2

Best ARM 4.32e18 3.98 2.96 4.94 / 4.96 3.58
Best MDM 1.24e20 3.83 2.93 4.50 / 4.52 3.44

10 Model Architecture

We adopt the Megatron-DeepSpeed framework as the foundation of our implementation, upon which
we build our training and evaluation setup for the masked Diffusion Model. Similar to the “extended
version of the architectures” proposed in [25], our model adheres to the general transformer design
while introducing several architectural modifications to better align with modern LLM practices.

Specifically, we replace absolute positional embeddings with Rotary Positional Embeddings (RoPE)
[40], which improve extrapolation to longer contexts and reduce parameter count. Furthermore, we
adopt the SwiGLU activation function in the MLP blocks, which has been shown to outperform
standard GELU or ReLU in both convergence and downstream performance [36]. To further simplify
the architecture and enhance training stability, we substitute standard LayerNorm with RMSNorm
and eliminate all bias terms. These design choices are consistent with [3, 43].

To preserve the original MLP capacity while aligning with hardware-friendly parameter sizes, we
compute the feed-forward hidden size hf as:

hf =

⌊
8 · dmodel

3 · 64

⌋
· 64

This rounding scheme ensures that the FFN hidden size remains divisible by 64 while closely
matching the effective dimensionality used in SwiGLU layers.

We slightly modify the parameter count estimation formula from the original:

P = 12lh2

(
1 +

13

12h
+

V + s

12lh

)
to better reflect our revised architecture. The original formula can be decomposed into: 4lh2 (atten-
tion), 8lh2 (MLP), 13lh (LayerNorm and biases), and (V + s)h (token and positional embeddings).
After applying our architectural adjustments—namely, using a SwiGLU-based MLP of dimension
hf , switching to RoPE (eliminating sh), and removing bias terms—we arrive at the revised formula:

P = 4lh2 + 3lh · hf + 6lh+ V h

Table 4 presents all model configurations used in our experiments along with their parameter counts.
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Table 4: Model Architectures
Name param (M) d_model origin_ffw_size ffw_size kv_size n_heads n_layers
7 7.0 128 512 320 32 4 3
14 13.6 224 896 576 32 7 4
20 19.5 288 1152 768 32 7 5
35 36.6 448 1792 1152 32 7 6
44 50.7 512 2048 1344 64 8 8
57 64.8 576 2304 1536 64 9 9
74 80.5 640 2560 1664 64 10 10
90 95.0 640 2560 1664 64 10 13
106 109.6 640 2560 1664 64 10 16
117 123.6 768 3072 2048 64 12 12
140 144.8 768 3072 2048 64 12 15
163 166.1 768 3072 2048 64 12 18
175 179.2 896 3584 2368 64 14 14
196 198.3 896 3584 2368 64 14 16
217 217.5 896 3584 2368 64 14 18
251 250.8 1024 4096 2688 64 16 16
278 275.7 1024 4096 2688 64 16 18
306 300.6 1024 4096 2688 64 16 20
425 416.9 1280 5120 3392 128 10 18
489 475.6 1280 5120 3392 128 10 21
509 495.9 1408 5632 3712 128 11 18
552 534.4 1280 5120 3392 128 10 24
587 566.7 1408 5632 3712 128 11 21
632 615.3 1536 6144 4096 128 12 19
664 637.6 1408 5632 3712 128 11 24
724 700.3 1536 6144 4096 128 12 22
816 785.2 1536 6144 4096 128 12 25
893 856.4 1792 7168 4736 128 14 20
1018 971.3 1792 7168 4736 128 14 23
1143 1086.3 1792 7168 4736 128 14 26
1266 1207.6 2048 8192 5440 128 16 22
1424 1353.6 2176 8704 5760 128 17 22
1429 1358.2 2048 8192 5440 128 16 25
1593 1508.9 2048 8192 5440 128 16 28
1609 1523.2 2176 8704 5760 128 17 25
1731 1644.9 2304 9216 6144 128 18 24
1794 1692.9 2176 8704 5760 128 17 28
2007 1899.8 2304 9216 6144 128 18 28
2283 2154.7 2304 9216 6144 128 18 32
2298 2165.3 2560 10240 6784 128 20 26
2639 2478.6 2560 10240 6784 128 20 30
2980 2791.9 2560 10240 6784 128 20 34
3530 3257.0 2688 10752 7168 128 21 36
3802 3561.3 2816 11264 7488 128 22 36
4084 3879.2 2944 11776 7808 128 23 36
4516 4231.9 3072 12288 8192 128 24 36
6796 6337.4 3584 14336 9536 128 28 40
9293 8640.6 4096 16384 10880 128 32 42
11452 10889.0 4352 17408 11584 128 32 47
12295 11444.2 4608 18432 12288 128 36 44
12569 12208.7 4608 18432 12288 128 32 47
13735 13560.0 4864 19456 12928 128 32 47
14940 14905.3 4992 19968 13312 128 32 49
16183 15028.3 5120 20480 13632 128 40 47
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